


1

IDENTIFICATION OF LINEAR AND NONLINEAR AERODYNAMIC IMPULSE RESPONSES
USING DIGITAL FILTER TECHNIQUES

Walter A. Silva
Aeroelasticity Branch

NASA Langley Research Center

   ABSTRACT  

     This paper discusses the mathematical
existence and the numerically-correct
identification of linear and nonlinear aerodynamic
impulse response functions.  Differences between
continuous-time and discrete-time system
theories, which permit the identification and
efficient use of these functions, will be detailed.
Important input/output definitions and the
concept of linear and nonlinear systems with
memory will also be discussed.  It will be shown
that indicial (step or steady) responses (such as
WagnerÕs function), forced harmonic responses
(such as TheodorsenÕs function or those from
doublet lattice theory), and responses to random
inputs (such as gusts) can all be obtained from an
aerodynamic impulse response function.  This
paper establishes the aerodynamic impulse
response function as the most fundamental, and,
therefore, the most computationally efficient,
aerodynamic function that can be extracted from
any given discrete-time, aerodynamic system.
The results presented in this paper help to unify
the understanding of classical two-dimensional
continuous-time theories with modern three-
dimensional, discrete-time theories.  First, the
method is applied to the nonlinear viscous
BurgerÕs equation as an example.  Next the
method is applied to a three-dimensional
aeroelastic model using the CAP-TSD
(Computational Aeroelasticity Program -
Transonic Small Disturbance) code and then to a  
two-dimensional model using the CFL3D
Navier-Stokes code.  Comparisons of accuracy
and computational cost savings are presented.
Because of its mathematical generality, an
important attribute of this methodology is that it
is applicable to a wide range of nonlinear,
discrete-time problems.

  INTRODUCTION

     During the early development of
mathematical models of unsteady aerodynamic
responses, the efficiency and power of
superposition of scaled and shifted fundamental
responses, or convolution, was quickly
recognized.  This led to the classical WagnerÕs
function1, which is the response of a two-
dimensional airfoil, in incompressible flow, to a
unit step variation in angle of attack.  Similar
functions such as KussnerÕs function, which is
the response of a two-dimensional airfoil to a
sharp-edged gust in incompressible flow, were
developed as well1.
     As geometric complexity increased, however,
the analytical derivation of these time-domain
fundamental functions became quite complicated
and, therefore, impractical.  Ultimately,
frequency-domain aerodynamics for three-
dimensional configurations became the method of
choice for computing linear unsteady
aerodynamic responses2.  For the case where
geometry- and/or flow-induced nonlinearities are
significant in the aerodynamic response, time
integration of the nonlinear equations is
necessary, as is done in unsteady CFD codes,
particularly for aeroelastic analyses.  As CFD
codes have grown in complexity and capability,
there is a very real need to incorporate these codes
into aeroservoelastic (ASE) analyses, loads
estimation, and other preliminary design efforts
in an efficient and accurate manner.  Direct
incorporation of a CFD code into the ASE
process is currently not practical due to the high
computational costs and turnaround time required.
As computational speeds improve and as new
algorithms are developed to address this problem,
the practicality of this approach may improve.
At the moment, however, the efficient
incorporation of the information provided by a
CFD code into disciplines such as ASE remains
a problem.  
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     Attempts to address this problem include the
development of transonic indicial responses3,4,5.
Reference 6 develops models of nonlinear
aerodynamic maneuvers from an experimental
database using neural networks.  References 7 and
8 provide reduced-order models for linear and
linearized solutions about a nonlinear condition.
     In order to develop robust, mathematically-
correct and efficient nonlinear models of the CFD
response, a mathematically-formal method is
required that is well defined in the time and
frequency domains and that is well defined for
continuous- and discrete-time systems.  The
discrete-time Volterra theory of nonlinear
systems fulfills these requirements and was
applied in the present research.  This theory has
found wide acclaim in the field of nonlinear
discrete-time systems9 and nonlinear digital filters
for telecommunications and image processing10,
to name a small subset of references.
Applications of this theory to nonlinear, discrete-
time aerodynamic systems include Tromp and
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, Rodriguez12, and Silva13,14.  In Ref. 13,
the concept of applying the Volterra theory to the
development of efficient linear and nonlinear
aerodynamic impulse responses was presented and
demonstrated to be feasible for high frequencies.
In Ref. 14, the identification, and computational
efficiency of linear discrete-time aerodynamic
impulse responses, valid for arbitrary inputs, was
demonstrated using the linear equations within
the CAP-TSD15 (Computational Aeroelasticity
Program - Transonic Small Disturbance) code.
Nonlinear aerodynamic impulse responses were
identified using the nonlinear equations within
the CAP-TSD code but were limited in scope
because of the particular identification technique
that was used.  The present paper removes these
limitations by presenting a mathematically-
correct identification scheme for nonlinear
responses.  Reference 14 represents the first time
that aerodynamic impulse response functions
were numerically identified.  The concept of
linear and nonlinear aerodynamic impulse
response functions introduces a totally new
perspective on linear and nonlinear, steady and
unsteady aerodynamics, as will be discussed.
     The purpose of this paper is to introduce
new, or improved, mathematical developments
that allow the mathematically-correct
identification of linear and nonlinear aerodynamic
impulse responses.  The functional classification
of the discrete-time Navier-Stokes equations that

enable the correct application of the discrete-time
Volterra theory to CFD codes is presented.  The
fundamental nature of these responses with
regards to classical and modern aerodynamic
theories and the impact of these developments on
fields such as aeroelasticity and ASE is discussed
as well.  As an illustrative example, the discrete-
time Volterra theory is applied to the nonlinear
viscous BurgerÕs equation.  Then the theory is
applied to a three-dimensional aeroelastic model
using the CAP-TSD code and then to an airfoil
in plunge using the CFL3D16 Navier-Stokes
code.  Comparisons of accuracy and
computational cost savings are presented.

   MATHEMATICAL PRELIMINARIES

Discretized Navier-Stokes Equations
     The application of CFD codes involves, in
general, the application of the discretized Navier-
Stokes (NS) equations.  This is true for the entire
spectrum of equation levels, from the linear
equations to the full Navier-Stokes equations,
including transonic small-disturbance (TSD) and
Euler equations.  The only difference between the
different equation levels is the number and type
of simplifying assumptions used to derive the
resultant governing equations.  It is important,
therefore, to understand the functional nature of
the NS equations17 from a mathematical systems
perspective.
     Upon convergence of an initial, steady-state
solution, the discretized NS equations form a
discrete-time, nonlinear, time-invariant system.
ReynoldÕs averaging of the NS equations and
inclusion of turbulence models to provide closure
does not alter this aspect of the equations.  This
realization, formally stated here for the first time,
allows the application of techniques routinely
used in the modeling and design of nonlinear,
discrete-time filters.  In particular, Ref. 18 proves
that discrete-time, nonlinear, time-invariant
systems with memory can be modeled arbitrarily
well using Volterra models, neural networks, or
radial basis functions.  An important attribute of
Volterra models is that physical interpretation of
the resulting functions is possible, in the time
and frequency domains, which often reveals an
underlying structure of the system.  Description
of the Volterra theory of nonlinear systems is
presented in Refs. 13 and 14, and the references
therein.
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     A time-invariant system, also referred to as a
stationary or autonomous system, is a system
whose fundamental properties do not change with
time.  An example of a simple, time-invariant,
nonlinear system is a pendulum.  Although the
full nonlinear equation of a pendulum is certainly
a function of time which exhibits nonlinear,
unsteady responses, neither the length of the
pendulum nor the mass at the end of the
pendulum are functions of time19.
     A time-varying system, also referred to as a
non-stationary or non-autonomous system, is a
system whose fundamental properties  change
with time.  Fortunately, for many of the
problems in aircraft unsteady aerodynamics,
aeroelasticity,  and aeroservoelasticity, the
governing nonlinear equations are time-invariant.
The linearization of these time-invariant,
nonlinear equations about an operating point
yields the familiar time-invariant, linear
equations that comprise the majority of modern-
day, linear analyses techniques in these fields.
     The memory of a system, linear or nonlinear,
is a measure of dependence of the system on
outputs from previous times.  The impulse
response of a linear system is the ÒmemoryÓ of
that system.  It is a temporal representation of
the manner in which and the length of time over
which a unit perturbation remains active in the
response of the system.  Convolution then is
used to predict the exact response of the linear
system to an arbitrary input (any and all steady
and unsteady inputs) because all responses of the
system are scaled and shifted superpositions of
this memory function.  Likewise, the concept of
memory functions can be extended to nonlinear
systems via the Volterra theory of nonlinear
systems.
     Numerical approximations to ordinary and
partial differential equations, such as finite-
difference techniques, are defined by the
dependence of the response on previous values of
input and output.  Clearly then, time-accurate,
discretized models, such as finite-difference
models, are systems with memory, by definition.
A discretized version of the NS equations (after
steady-state convergence) is, therefore, a time-
invariant, nonlinear, discrete-time system and the
application of the discrete-time Volterra theory to
this system of equations is a valid mathematical
approach as proved by Ref. 18.

Discrete-time Systems
     The modern field of discrete-time signal
processing20 is a mathematical systems field that
addresses substantially more issues than just the
sampling of a continuous-time signal.  A main
topic in this field is that of digital filter design.
In digital filter design, there exist mathematical
concepts that are quite different from their
continuous-time counterparts.  The first of these
is the unit impulse function, or the Dirac delta
function.  Whereas the continuous-time unit
impulse is an abstract function, typically
considered impractical for actual applications21 or
sometimes misinterpreted as an indicial (step)
input6,22,23, the discrete-time equivalent, known as
the unit sample function, is a simple, well-
defined and extremely useful function.  Digital
filters are designed using this input and its
resultant output known as the unit sample
response.  The unit sample function is defined as

       u[t]    =  1.0  for k=k0
                =  0.0  for k¹k0                       (1)

The application of this input to a linear, discrete-
time system will yield the systemÕs unit sample
response, the discrete-time equivalent of the unit
impulse response.  The properties of the unit
sample response are identical to those of the unit
impulse response.  Both responses completely
define a linear system and, through convolution,
the response of the system to any  arbitrary input
can be predicted exactly without actually
processing the arbitrary input through the
system.  This is because the unit sample
response captures the systemÕs complete
frequency content.
     A linear systemÕs frequency characteristics
can be determined by applying multiple sinusoids
of varying frequency, applying band-limited
white noise, or by computing the fast Fourier
transform (FFT) of the unit sample response.
The application of multiple sinusoids is,
basically, how linear, frequency-domain, unsteady
aerodynamics are generated.  The band-limited
white noise technique implies exploration of
different segments of the systemÕs bandwidth in a
piecewise, overlapping, and inefficient fashion.
The most efficient approach is to compute the
FFT of the unit sample response, yielding the
systemÕs frequency response.  This efficiency is
the result of the fundamental properties of the
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unit sample response.  Additional evidence of
this efficiency is the fact that the response of the
system to the multiple sinusoidal inputs and the
band-limited white noise can be computed via
convolution of these inputs with the unit sample
response.  Therefore, from the single
computation of the unit sample response, all
system responses, from steady (step) to random,
can be generated as well.  This concept is well
understood and routinely applied in the design of
digital filters yet appears to be rare in fields
dominated by continous-time concepts.
     The concept of convolution is another idea
that is routinely used in digital filter design but
that is perceived as somewhat abstract, and
therefore avoided, by the continuous-time
community.  Because it was believed that
practical application of an impulse to an
aerodynamic system could not be performed,
discrete-time aerodynamic impulse responses
were never identified until recently in Ref. 14.
     Convolution, in discrete-time, is defined as

      y[n] =  h[n - k] x[k]                         (2)
k 0=

¥
å

where h[n-k] is the unit sample response and x[k]
is the arbitrary input.  It is important to
understand that this is not the discrete-time
version of DuhamelÕs integral24, which is the
convolution of a unit step response with the
derivative of an arbitrary input. The unit step
(indicial) response is not the same as the unit
sample (impulse) response6,22,23.
     The response of a linear system to an
arbitrary function of time, x[k], can be computed
via three methods.  The first, or trivial method,
is to process the input through the system itself.
If the system is complex and computationally
intensive, significant computational costs,
including turnaround time, will be incurred.  The
second method is to identify the systemÕs unit
step response and then, via convolution with the
derivative  of the arbitrary input, obtain the
response of the system using

y[n]  =   x[0] S[n]  +   S[n - k] x© [k] t         (3)
k=0

D
¥
å

where S[k] is the unit step response and xÕ[k] is
the derivative of the arbitrary input.  Equation (3)
is the discrete-time equivalent of DuhamelÕs
integral.  The first term in Eq.(3) must, of

course, be included whenever x[0] is nonzero.
Equation (3) is the correct discrete-time
implementation for indicial (or step)
aerodynamics.  It is mathematically-valid if and
only if the step response is correctly identified
and applied in Equation (3).  The application of
step functions has typically been a problem in
computational unsteady aerodynamics because of
the downwash equation and the perceived problem
with the derivative of a step input.  This issue is
addressed in a subsequent section of this paper.
     The third method is to identify the systemÕs
unit sample response and, via convolution with
the arbitrary input, x[k], (Eq. (2)), obtain the
response of the system.  Again, proper
identification of the unit sample response is a
requirement for the succesful application of this
method.
     Clearly, for complex and computationally-
intensive linear systems, the second and third
methods provide the most efficient method for
computing responses because repeated execution
of the system is not required.  The unit sample
response and the unit step response contain all
the necessary information regarding the systemÕs
behavior in a compact form.  In addition, the
derivative of the unit step response is the unit
sample response so that only one response, the
step or the unit sample response, is needed to
compute the other.  The derivative of WagnerÕs
function, for example, yields the incompressible,
aerodynamic impulse response due to plunge for
a two-dimensional airfoil25.  Figure 1 was
obtained using W.P. JonesÕ approximation to
WagnerÕs function21.  Details regarding this result
and its relation to TheodorsenÕs function can be
found in Ref. 25.
     In this research, the identification and use of
linear and nonlinear aerodynamic unit sample
responses is favored over that of the unit step
responses for the following reasons:  (1) The unit
step response can be computed via convolution
of the unit sample response with a step input,
yielding the steady-state solution; and (2)
Convolution using the unit sample response
involves the actual input whereas convolution
using the unit step response involves the
derivative of the input, requiring additional,
unnecessary computational effort.  The unit
sample response is the most compact
representation of a linear system from which all
other steady and unsteady responses can be
generated.  Extension of this concept to nonlinear
systems then enables the efficient computation of
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nonlinear steady and unsteady responses due to
arbitrary inputs.
     Identification of linear aerodynamic unit
sample responses14 has interesting implications.
First, it provides an alternative to the forced
harmonic method for computing unsteady
aerodynamic forces by computing the unit
sample responses for each mode and then
performing the convolutions with sinusoidal
inputs of varying frequency.  This could be done
more directly by performing a Fourier transform
of each of the modal unit sample responses.
     The unsteady aerodynamic frequency domain
may be avoided altogether by performing the
aeroelastic analyses directly in the time domain13.
This is done by coupling the aerodynamic unit
sample responses with the linear structure in a
closed-loop sense and obtaining the time-accurate
aeroelastic transients.  Since the aerodynamic
unit sample response is valid in the complex
plane, there is no need for rational function
approximations23 (RFAs) that extend the forced-
harmonic responses, valid only along the
imaginary axis, to the complex plane via analytic
continuation.  Current methods for generating
RFAs, limited by a specified frequency range of
interest to generate a low-order model, are
actually modeling that portion of the unit sample
response that contains the particular frequency
range of interest13.  The aerodynamic unit sample
response can also be used to realize a linear,
discrete-time, state-space system26.  This
approach was investigated by the author and will
be the subject of another paper.
     Linear frequency domain and RFA methods
are not applicable to nonlinear aerodynamics and,
consequently, the generation of time-accurate,
aeroelastic transients is necessary.  The discrete-
time Volterra theory of nonlinear systems, along
with new mathematical developments presented
in this paper, provides a formal method for the
identification of nonlinear unit sample responses.
This results in significant computational
efficiency when applied, for example, to a CFD
code.

Aerodynamic System Input Definition
     An important conceptual development of Ref.
14, and its subsequent improvement in the
present research, was the mathematically-correct
definition of the input to an unsteady
aerodynamic system for the discrete-time domain.
The input function consists of the downwash

function, which, for the excitation of a given
mode is written as

   w(x,y,t)   = phiÕ(x,y)¥u(t) + phi(x,y)¥uÕ(t)    (4)

where phi(x,y) is the modeshape, phiÕ(x,y) are
the slopes of the modeshape, u(t) is the
generalized coordinate, and uÕ(t) is the derivative
of the generalized coordinate.  The discussion
will be limited, temporarily, to the linear case.
     The current method for the excitation of
aeroelastic modes within a CFD code involves
the definition of a ÒsmoothÓ function defined as

              u(t)  = d0*exp(-w(t-t0)**2)              (5)

where d0 is the maximum amplitude desired, w is
the width, and t0 is the time at which the
maximum amplitude is reached.  This Gaussian
curve (Equation (5)) is referred to as the
exponential pulse function.  This exponential
pulse is input to each of the modes of the system
to obtain the set of exponential pulse responses,
about a nonlinear steady state solution27,28 that
are then transformed to the frequency domain for
use in standard linear analyses techniques.  This
should not be confused with the unit pulse
response mentioned throughout this paper.
Whereas the unit pulse input (Eq. (1)) excites all
the frequencies for a given mode, the exponential
pulse input will excite only the particular range
of frequencies defined by the width of the
exponential pulse.  This can be explained using
Eq. (4) as follows.
     From Equation (5), the downwash equation
consists of the first term which multiplies u(t)
by the slopes of the modeshape added to uÕ(t)
multiplied by the modeshape.  When the shape of
u(t) is narrowed, then the derivative term, uÕ(t), is
much bigger and changes more rapidly than it
does for the wider pulse, thereby exciting higher
frequencies.  Shape optimization may, therefore,
have to be performed to obtain the desired
frequency range of interest.  Typically, a ÒwideÓ
pulse is recommended, forcing the uÕ(t) term to
be small.
     A critical drawback, however, is that the
exponential pulse is perceived, erronously, as a
single input.  That is, the fast Fourier Transform
(FFT) of the output generalized force is divided
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by the FFT of the perceived single input, u(t), to
obtain the linearized frequency response function
for that generalized force.  But inspection of Eq.
(4) clearly shows that the downwash function is a
two-input function.  The user defines u(t) but the
quantity that is input to the flow solver is Eq.
(4), which includes the effect of uÕ(t) as well.
Because this derivative is computed analytically
internal to the code, it is invisible to the user,
although it is certainly not invisible to the flow
solver.
     Inspection of Eq. (4) for a plunge mode
reveals that the first term is identically zero
because the slopes of a plunge mode are zero.
Therefore, the only temporal function that is
actually input to the flow solver is uÕ(t).  For a
plunge mode, the denominator of the frequency
response function should be the FFT of uÕ(t), not
the FFT of u(t).  This will be demonstrated using
convolution with examples from CAP-TSD and
CFL3D in the results section of this paper.
     It is because this second term of the
downwash input has been ignored that wiggles
appear at lower or higher frequencies, depending
on the input u(t), in early applications of the
technique27.  The reason for the success of the
technique to date is that for most modes, a very
wide u(t) term results in a very small uÕ(t) term,
thereby exciting, predominantly, the lower
frequency range which is, typically, where most
analyses are desired anyway.  If an accurate
determination of the entire frequency range of a
mode is desired, then the second term of the
downwash function must be included in the
analysis.  In terms of computational efficiency,
the exponential pulse response does not possess
any of the mathematical properties of the unit
sample response nor can it be formally extended
to nonlinear systems.
     The misinterpretation of the downwash as a
single input has led to the false conclusion that
impulse (or unit pulse) and step inputs cannot be
applied to a CFD code because these inputs will
result in numerical difficulties.  The reasoning is
that the application of a unit pulse, or  unit step,
input as u(t) would lead to a very large, if not
infinite, derivative term,  uÕ(t).  So typically, a
step input is modified, or made ÒsmootherÓ, so
that the uÕ(t) does not cause numerical problems.
These ÒsmootherÓ responses, however, are not
mathematically consistent with the strict
definition of unit pulses or unit step inputs and
so will yield inaccuracies when used in
convolution.  The unit pulse and unit step

functions have a very precise mathematical
description which allows for convolution to be
applied.  Any deviation from this precise
definition will reduce, or possibly eliminate, the
accuracy of the convolution.
     Mathematically, the downwash equation (for
a given mode) is clearly a two-channel input.
For the linear case, each term of the downwash
equation can, and should, be treated as a separate
input channel14.  For the nonlinear case, the
response due to the sum of the terms of the
downwash will not be equal to the sum of the
separate responses due to each term of the
downwash.  The inputs, however, still need to be
treated as independent inputs.  This difficulty was
solved by computing a combined unit sample
response that consists of a unit sample input
applied to each of the two inputs simultaneously
while using a deconvolution25 technique to
maintain mathematical accuracy.  This
deconvolution technique identified the proper
temporal function that can be used with the
combined unit sample response to yield the
correct final response for the linear case.  Since
the combined motion of the system due to the
combined inputs of the downwash is the same for
the linear and nonlinear cases, the same combined
motion is used in the linear and nonlinear
convolutions.  The effectiveness of this method
will be presented in the results section of this
paper.

   VOLTERRA THEORY   

     The discrete-time Volterra series for a
truncated, second-order, time-invariant, system
has the form

  

y[n]  =    h      +   h [n - k] x[k]   +

              h [n - k1, n - k2] x[k1] x[k2]  

0 1
k=0

N

2
k2=0

N

k1=0

N

å

åå

                                                              (6)

where y[n] is the response of the nonlinear
system to x[k], an arbitrary input; h0 is the mean
value about which the response is defined; h1 is

the first-order kernel or the linear unit sample
response; and h2 is the second-order kernel.

Details of the theoretical definitions of this
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method, including identification of the kernels,
can be found in Refs. 13, 14 and all the
references therein.  As in Refs. 13 and 14,
modeling of the nonlinear aerodynamic system
will be limited to identification of the first- and
second-order kernels.
     An intuitive explanation of the application of
this approach to a nonlinear system can be stated
as follows.  It is a well-established procedure to
linearize a nonlinear system by expanding the
nonlinear terms in a Taylor Series about a chosen
point.  The resultant Taylor Series, if expanded
to sufficient terms, is an excellent approximation
to the actual nonlinearity.  That is, there are no
restrictions on its range of applicability regarding
input amplitudes.  As the series is truncated by
gradual elimination of the higher-order terms
from highest to lowest, limitations on the range
of applicability of the series approximation
become more restrictive until the only term left
is the linear term, the most severely restricted
term of all.  If higher-order terms are gradually
added back in to the series approximation, one at
a time, the accuracy of the approximation is
improved and the range of applicability is
increased as well.  The present method is,
therefore, a method that re-instates higher-order
terms that were removed during the linearization
of the equations.  This will yield improved
accuracy over the purely linear solution and will
increase the range of applicability as well.
     Also, when a ÒsmallÓ (or ÒlinearÓ) input is
applied to a nonlinear system, there is an
implicit assumption of the equivalence between
the nonlinearity and its series expansion.  This is
evident because it is in the presence of a series
expansion formulation  that a ÒsmallÓ input will,
in fact, yield the ÒlinearÓ portion of the response
since the higher-order terms (second-order and
above) are much smaller and, therefore,
negligible.  The accepted practice of using a
ÒsmallÓ amplitude exponential pulse response
(within a CFD code, for example) to excite only
the ÒlinearÓ portion of the response about a
nonlinear solution implies a series
approximation to the nonlinearity.  As a result,
this ÒsmallÓ input approach offers additional
validation to the present application of the
discrete-time Volterra theory, which seeks to
identify the next higher-order term after the linear
term.
      Furthermore, the first-order term is more
accurate than the purely linear term because the
first-order term is derived with knowledge of the

second-order, or higher-order, terms.  Therefore,
for a second-order nonlinearity, the first-order
term is the proper and correct linearization.  The
first-order term can be considered to represent a
ÒmeanÓ value of the response with the second-
order term representing a higher-order variation
about that mean.
     The success of linearized aerodynamic
predictions for certain flight  regimes, and under
certain small perturbation assumptions, is due to
the fact that highly nonlinear phenomena have a
negligible impact on the net effect of various
responses at these conditions.  It does not mean
that rotational, viscous, and turbulent effects
disappear from the flow at these conditions, but
rather that these effects do not excite higher-order
effects sufficiently to affect the overall response.
Increasing the order of this restricted linearized
approximation to model higher-order effects is,
therefore, a logical step.
     The computational efficiency of the present
technique is due to the following features of the
method.  1). Identification of the first- and
second-order kernels eliminates the need to re-
execute the code.  2). The kernels can be coupled
with a structure in a closed-loop sense ÒoutsideÓ
of the CFD code, on a workstation, sidestepping
the current, very expensive method of solving the
aeroelastic equations of motion within the CFD
code.   3). The identification of the kernels is
geometry independent.  The kernel of a three-
dimensional configuration is, topologically, no
different from the kernel of a two-dimensional
configuration.  The only difference is the initial
cost of identification that requires the use of the
CFD code.  The complex CFD model, consisting
of three spatial variables and one temporal
variable, is mapped onto the unit sample
response, a compact function of time only.  The
modal approach and the definition of boundary
conditions within a CFD code make this
mapping possible.  4). This technique permits a
unified approach for generation of compact,
linearized and nonlinear, steady and unsteady
models from the same, arbitrarily complex CFD
model (complete configuration, finest grid, most
detail), including, of course, stability derivatives.

   RESULTS

Linear CAP-TSD
     The linear equations within the CAP-TSD
code were used for comparisons of unit sample
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and step responses.  The computational model is
a rectangular wing with an aspect ratio of two.
All results presented are for M=0.9.  Shown in
Figure 2 is a comparison of the plunge unit
sample response and the plunge unit step
response.  Convolution of the unit sample
response with a unit step also yields the unit step
response, as shown in Figure 3.  Convolution of
the unit sample response with the input shown
in Figure 4, uÕ(t), yields the exact, CAP-TSD-
generated result, also shown in Figure 4.
Convolution of the plunge unit sample response
with uÕ(t), instead of u(t), yields the correct
result, consistent with the discussion regarding
Equation (4) in a previous section.
     These results demonstrate the relationship
between a unit sample response and a unit step
response for a linear unsteady aerodynamic
system and the correct application of these
functions.  Also, it is important to realize that
the unit sample response, when convoluted with
a step input results in the steady-state solution,
as shown.  Therefore, unit sample responses can
be used for predicting the steady and unsteady
responses of a system.  This applies to the
nonlinear case as well where the savings in
computational cost and time are of greater
importance.

Viscous BurgerÕs Equation
     The 1-D viscous BurgerÕs equation is defined
as

               
¶

¶

¶

¶
u
¶

¶

u

t
 +  u

u

x
 =  

u

x
              (7)

2

2

and is typically used as a simplified model of the
Navier-Stokes equations for evaluating the
effectiveness of numerical methods29.  It is used
here to demonstrate the effectiveness of the
discrete-time Volterra technique.  The numerical
solution is implemented via a simple forward-in-
time, central-in-space (FTCS) method.
     The identification part of the process consists
of the generation of the first- and second-order
kernels of a selected grid point due to
perturbation of the end-point boundary condition.
Shown in Figure 5 is the first-order kernel of the
system, revealing a well-behaved and compact
function.  Shown in Figure 6 are the first twenty
terms of the symmetric second-order kernel.
These terms indicate a second-order nonlinear
memory that goes to zero fairly quickly.

     Shown in Figure 7 is a comparison of several
responses due to step inputs of increasing
amplitude for the actual numerical solution, the
convolution of the first-order kernel with each of
the inputs, and the convolution of first- and
second-order kernels with each of the inputs.  As
the amplitude is increased, the error between the
actual (ÒtrueÓ) response and the first-order
response increases, indicating an increasing effect
of the nonlinearity as amplitude is increased.
Addition of the second-order convolution shows a
significant improvement in accuracy, as seen in
Figure 7.  The crossing over of the convolved
response for the largest step response could be an
indication of a convergence limit or the need for
additional terms of the second-order kernel.  The
improvement in response with the addition of the
second-order term is, nontheless, evident.  Using
only the first-and second-order kernels, steady-
state responses of the nonlinear system can be
computed without re-execution of the actual
numerical system.  It is interesting to note that,
for a certain range of amplitudes, the first-order
response may be sufficient, depending on the
level of accuracy desired.
     Actual and convolved responses, using the
same first- and second-order kernels, due to
sinusoidal inputs were generated25.  Shown in
Figure 8 is the comparison for one of these
inputs.  Again, the comparisons were excellent
with the combined first- and second-order
response showing the best agreement with the
actual responses.  In the case of a purely linear
system, these responses could be used to generate
the frequency response function of the system, as
is done in the doublet lattice technique for linear
aerodynamic systems.  Therefore, whereas the
unit sample responses are valid in the complex
domain, the forced harmonic response, which can
be generated from the unit sample response, is
valid only on the imaginary axis.  The unit
sample responses (linear) and first- and second-
order kernels (nonlinear) do not have any such
limitation.  The only limitation of the nonlinear
functions is that the radius of convergence of the
series is limited by the norm of the input13,14,
which depends on the system being investigated.
These functions are therefore more powerful and,
at the same time, more efficient than any other
responses that can be obtained from a given
system.  This is because all other system
responses are the result of a convolution of the
systemÕs unit sample response with some
arbitrary input.
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   Shown in Figure 9 is a comparison of the
actual, first-order, and first- plus second-order
responses due to a quasi-random input from a
uniform probability distribution.  Again, the
comparisons are reasonable for the first-order
only and excellent for the first- plus second-order
responses.  This is analogous to the computation
of the response of a nonlinear system (aircraft)
due to a random input, such as a gust.  Therefore,
just as in the linear case, the first- and second-
order kernels can be used to predict the response
of the nonlinear system to any arbitrary  input,
which is an infinite set of possible inputs.

Nonlinear CAP-TSD
     The nonlinear TSD equation is solved within
the CAP-TSD code for a rectangular wing with a
NACA0012 airfoil section undergoing plunge
and an aspect ratio of two at a Mach number of
0.9.  Figure 10 is a comparison of nonlinear
CAP-TSD responses, due to plunging motions
of different amplitudes, with the convolved
results of the first-order kernel with the same
inputs.  The linear CAP-TSD result for the first
amplitude is also shown for comparison.  For
this mode, the first-order kernel seems to be
sufficient to capture the range of responses.  This
is not surprising given the nature of the TSD
equation.  The cost for ten of these types of
responses using CAP-TSD directly is 38,000
CPU secs and 15 hours turnaround time.  The
cost using the first-order convolution for ten of
these types of responses is 4,150 CPU secs and
2.04 hours turnaround time.  Most of the cost of
the first-order convolution is the initial
identification part of the process since each
convolution itself took only 75 seconds on a
workstation.  As the need for the response of the
system to arbitrary inputs (motions) increases,
the cost of the method decreases because once the
unit sample responses are obtained, the CFD
code need not be re-executed.
     Figure 11 is a comparison of the actual
nonlinear CAP-TSD solution for the same wing
undergoing an arbitrary pitching motion and the
response obtained by the convolution of the
combined first-order kernel and the appropriate
input, obtained as described in an earlier section
of the paper.  The comparison is reasonable, but
for this mode, the second-order terms are needed25.
The computational efficiency has, however, been
doubled and is now mathematically correct for
nonlinear responses.  The reason for this is that
instead of computing two responses per mode

(one for each term of the downwash function, Eq.
(4)), only one response per mode is needed.

CFL3D (version 5.0)
     Navier-Stokes results for a dense-grid RAE
airfoil16 with the Spalart-Allmaras turbulence
model undergoing plunge at M=0.75 were
computed at a time step of 0.001.  The RAE
airfoil grid is presented in Figure 12.
     Comparison of CFL3D plunge responses and
the corresponding first-order plunge responses for
two different amplitudes are shown in Figure 13.
Also shown in Figure 13 is the corresponding
linear response for the larger amplitude.  The
comparisons are excellent, with decreasing
accuracy as the amplitude increases, similar to
the viscous BurgerÕs equation results.  However,
it is clear that the first-order result is superior to
the linear result.  Details for this case can be
found in Ref. 25.
     These results prove the applicability of
discrete-time, nonlinear, unit sample responses at
the NS equation level, as discussed in the
beginning of the paper.
     The cost of each CFL3D run was about
2,000 CPU seconds.  The cost of the first-order
kernel identification was 400 CPU seconds
because the kernel goes to zero in less than 100
time steps.  The cost of each convolution,
performed on a workstation, was 30 seconds.
The most important point, however, is that a
compact model has been identified that is valid
for arbitrary motions for a range of amplitudes
without re-execution of the code.

   CONCLUSIONS

     The mathematically correct and numerically-
accurate identification of linear and nonlinear,
discrete-time aerodynamic impulse responses was
presented.  For the linear case, the aerodynamic
impulse response functions were used to
reproduce exactly the responses of a linearized
three-dimensional aeroelastic CFD model to
arbitrary aeroelastic input motions at a fraction of
the computational cost and time.  It was shown
that the response to step (steady), sinusoidal, and
random inputs can all be computed from an
impulse response function, establishing the
aerodynamic impulse response function as the
most fundamental aerodynamic function that can
be extracted from a discrete-time, aerodynamic
system.
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     For the nonlinear case, the existence,
identification, and application of nonlinear,
discrete-time, aerodynamic impulse responses was
presented.  Applications of the method to the
nonlinear viscous BurgerÕs equation revealed the
existence of well-behaved first- and second-order
impulse response functions.  The method was
then applied to nonlinear aeroelastic CFD models
using the CAP-TSD and CFL3D codes.  The
results prove the existence of these functions for
complex, three-dimensional CFD models and
their application demonstrates their accuracy and
computational efficiency.
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